If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+32y-384=0
a = 2; b = 32; c = -384;
Δ = b2-4ac
Δ = 322-4·2·(-384)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-64}{2*2}=\frac{-96}{4} =-24 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+64}{2*2}=\frac{32}{4} =8 $
| 6x-6+11x-1=180 | | 10.63=2πr | | 16-4x=-6x+12 | | 3x-1=(2x-4)+(2x-3)-2 | | 6x-7+3x+5=25 | | -2z-1/2=3z+8 | | 25-2nn=4 | | 6(2c+4)=12c+36 | | 7-28x+19=3+21x | | /22x-4x=15-6x | | 1.04=x-4.6/0.7 | | 3x-1=(2x-2)+(2x-1) | | 2x-(-1)=7 | | -(x-3)=-6x+8 | | 11.6y-6.8=16.4 | | 5x-3+3x+10=31 | | X^+2x=18 | | (x)Y=10x+45 | | -3/3y=6 | | 3(5x-6)=×-18 | | -4/7x-8/21x+1/3x=-52 | | 37x+5+-2+22x=180 | | 14x-15=10x+105 | | 6x-15+4x=-9 | | 0=x^2+19.6x-10000 | | Y=x^2+19.6x-10000 | | 6u+12=-12-8u | | 4x-29=(13)+(6)+(2x-18) | | .7*x=3.75 | | -3/5x-1/5x+10=4 | | 5a+8=6a−1 | | n+22n+5=0 |